

Journal of Organometallic Chemistry 501 (1995) 1-6

Pentafluoro- λ^6 -sulfanylacetylene complexes of cobalt

Thomas Henkel, Axel Klauck, Konrad Seppelt *

Freie Universität Berlin, Institut für Anorganische und Analytische Chemie, Fabeckstraße 34-36, D-14195 Berlin, Germany

Received 26 August 1994; in revised form 4 October 1994

Abstract

The reaction of $Co_2(CO)_8$ with R-C=C-SF₅ gives 1:1, 1:2, and 1:3 type products, depending on R. For R = H all three products can be isolated. According to the single-crystal structure determinations, the 1:1 product has the known di-cobaltatetrahedrane structure, the 1:2 product is a cobaltacyclopentadiene cobalt, whereas the 1:3 product has been previously identified as a "fly-over bridge" complex. Sterically more crowded $F_3C-C=C-SF_5$ and $C_6H_5-C=C-SF_5$ give only the 1:1 reaction. The product of $F_3C-C=C-SF_5$ reacts further with $H-C=C-SF_5$ to a 1:3 product, made up of different alkyne molecules.

Keywords: Cobalt; Sulfur; Fluorine; Pentafluorosulfanylacetylene complexes

1. Introduction

The reaction of $Co_2(CO)_8$ with alkynes has been well investigated [1]. A series of 1:1 products is well known; they have inevitably a dicobaltatetrahedrane structure. There are also a few isolated 1:3 products known [1]. In these a chain of six carbon atoms is formed from three alkyne molecules which winds around the two cobalt atoms. This configuration has been called a "fly-over bridge" complex. These complexes are sources for 1, 2, 4-substituted benzenes, if alkynes H-C=C-R are used. Only one example of a 1:2 product is known in the literature; this was obtained when $Co_2(CO)_8$ was reacted with highly reactive cyclooctyne. Its structure can be described as a halfsandwich complex made up of cobalt and a cobaltacyclopentadienyl ring [2].

SF₅-substituted alkynes are quite unreactive. This is certainly a consequence of the sterical protection by the rigid SF₅ group, but also of its electronegativity, so that these alkynes must be regarded as electron poor. F₅S-C=C-SF₅ as an extreme example does not even react with undiluted SbF₅ at room temperature [3]. Therefore it was not surprising that the reaction between Co₂(CO)₈ and F₅S-C=C-SF₅ stops at the tetra-

* Corresponding author.

hedrane stage, and the product has been identified among other methods by a single-crystal structure determination [4,5]. With H–C=C–SF₅ all three reactions are observed, and the compounds can be isolated. The 1:3 product has been identified as a fly-over bridge complex; its degradation with bromine serves as a source for otherwise not obtainable 1, 2, 4-(SF₅)₃ benzene [4].

2. Results and discussion

In this work we consider the identification of the 1:1 and 1:2 products. The 1:1 compound is not unexpectedly a dicobaltatetrahedrane complex. The result of its crystal structure determination is shown in Fig. 1 and later in Table 3. Bond lengths and angles are quite similar to those of other dicobaltatetrahedranes [1]. The 1:2 compound, however, is formed only in very small amounts, and, besides the previously mentioned complex with cyclooctyne, no other example was known. The crystal structure determination resulted in a cobaltacyclopentadienyl cobalt complex, as shown in Fig. 2 and later in Table 5. The molecule has almost perfect mirror symmetry. The cobaltacyclopentadienyl ring is essentially planar (the sum of angles is 537°). In general the structure is very similar to that of the product with cyclooctyne. The two SF₅ groups are

^{*} Dedicated to Herbert Schumann on the occasion of his 60th birthday.

Fig. 1. ORTEP view of $[Co_2(CO)_6(HC_2-SF_5)]$. The vibrational ellipsoids show 50% probability.

positioned in such a way that they avoid each other as much as possible.

$$[Co_{2}(CO)_{8}] + RC \equiv C-SF_{5}$$

$$\longrightarrow [Co_{2}(CO)_{6}(C_{2}R-SF_{5})]$$
Dicobaltatetrahedrane (R = H, CF₃, C₆H, SF₅)
+ 2HC \equiv C-SF_{5}
$$\longrightarrow [Co_{2}(CO)_{5}(C_{2}H-SF_{5})_{2}]$$
Colbatacyclopentadiene cobalt
+ 3HC \equiv C-SF_{5}

$$\longrightarrow \begin{bmatrix} Co_2(CO)_4(C_2H-SF_5)_3 \end{bmatrix}$$
(1)
Fly-over bridge complex

Since now such a cobaltacyclopentadiene cobalt complex has been formed from extremely reactive cyclooctyne as well as from quite unreactive H-C=C-SF₅, it can be assumed that it is always present if the reaction goes beyond the 1:1 stage. Only small yields may have prevented detection in all those cases where 1:3 products have been isolated. It can be assumed that the 1:1, 1:2 and 1:3 products are formed stepwise and that the incoming alkyne adds in a side-on manner to one cobalt atom. The step of reorientation to the final 1:2 and 1:3 products is obviously guided by sterical repulsion of the large SF₅ groups. So in the reaction $1:2 \rightarrow 1:3$ the alkyne molecule can only add in such a way that both terminal carbon atoms of the C(6) chain in the fly-over bridge complex carry SF₅

Fig. 2. ORTEP view of $[Co_2(CO)_5(HC_2-SF_5)_2]$. The vibrational ellipsoids show 50% probability.

groups. This enforces the generation of 1, 2, 4-substituted benzenes upon degradation.

$$[\operatorname{Co}_{2}(\operatorname{CO})_{6}\{\operatorname{C}_{2}(\operatorname{CF}_{3})-\operatorname{SF}_{5}\}] + \operatorname{HC}=\operatorname{C}-\operatorname{SF}_{5}$$
$$\longrightarrow [\operatorname{Co}_{2}(\operatorname{CO})_{6}(\operatorname{C}_{2}\operatorname{H}-\operatorname{SF}_{5})_{2}\{\operatorname{C}_{2}(\operatorname{CF}_{3})-\operatorname{SF}_{5}\}] (2)$$

The reaction of $\text{Co}_2(\text{CO})_8$ with $F_3\text{C}-\text{C}=\text{C}-\text{SF}_5$ and $\text{C}_6\text{H}_5-\text{C}=\text{C}-\text{SF}_5$ results only in the tetrahedrane even after long reaction times. The crystal structure of the first compound is shown in Fig. 3 and later in Table 7. The equatorial fluorine atoms on sulfur have quite large vibrational amplitudes. We assume that at -158°C the free rotation of the SF₅ group around the

Fig. 3. ORTEP view of $[Co_2(CO)_6(F_3C-C_2-SF_5)]$. The vibrational ellipsoids show 50% probability. The large vibrational amplitudes of the equatorial fluorine atoms indicate partial rotational disorder of this group at $-158^{\circ}C$.

Table 1 Crystal structure experimental data

	$[\mathrm{Co}_2(\mathrm{CO})_6(\mathrm{HC}_2-\mathrm{SF}_5)]$	$[Co_2(CO)_5(HC_2-SF_5)_2]$	$[\mathrm{Co}_2(\mathrm{CO})_6(\mathrm{F}_3\mathrm{C}-\mathrm{C}_2-\mathrm{SF}_5)]$
Formula	C ₈ HCo ₂ F ₅ O ₆ S	$C_9H_2Co_2F_{10}O_5S_2$	C ₉ Co ₂ F ₈ O ₆ S
Molecular weight	437.81	561.78	506.01
Color	Orange	Brown-red	Orange
Size (mm)	$0.4 \times 0.4 \times 0.3$	0.4 imes 0.2 imes 0.2	0.4 imes 0.4 imes 0.3
<i>a</i> (pm)	964.5(2)	1192.9(4)	773.2(2)
<i>b</i> (pm)	1268.1(4)	1356.0(8)	1395.5(4)
<i>c</i> (pm)	1085.7(1)	1948.8(11)	1422.7(7)
β (°)	100.19(1)		94.17(3)
Volume (10^6 pm^3)	1307.0(5)	3152(2)	1535(1)
Temperature (°C)	- 148	- 158	-158
Ζ	4	8	4
Space group	$P2_1/n$ (No. 14)	<i>Pbca</i> (No. 61)	$P2_1/n$ (No. 14)
$\mu ({\rm cm}^{-1})$	7.05	6.88	6.08
Θ range (°)	2-30	2-25	2-25
Indices	$\pm h,k,l$	+h, +k, +l	$\pm h,k,l$
Number of measured reflections	4102	2912	2223
Number of independent reflections	3608	2539	2003
Number of reflections with $F \ge 3\sigma(F)$	3231	1950	1605
Number of parameters	203	253	235
R; R _w	0.022; 0.026	0.066; 0.052	0.058; 0.064
Weighting scheme	$1.66[\sigma^2(F) + 0.0005F^2]$	$2.05/\sigma^2(F)$	$2.17/[\sigma^2(F) + 0.005F^2]$

S-C bond has been frozen to a partially disordered orientation.

However, this tetrahedrane reacts with excess $HC=C-SF_5$ in very long reaction times (months at room temperature) to $[Co_2(CO)_4(HC_2-SF_5)_2(F_3C-C_2-SF_5)]$, the first of such SF₅-substituted fly-over bridge complexes formed from different alkynes. This compound exists in two isomers. The inverted reaction of $[Co_2(CO)_6(HC_2-SF_5)]$ with $F_3C-C_2-SF_5$ gives only alkyne exchange. Such exchange has been described before [1].

The sterically most crowded tetrahedrane carrying two SF₅ groups, however, is completely inert against further reaction or alkyne exchange. Similarly $F_5S-C=C-SF_5$ does not react with any dicobaltatetrahedrane.

3. Experimental details

The general procedures used were as follows. NMR spectra: JEOL F 90 Q instrument; ¹H, 89.55 MHz; ¹⁹F, 84.25 MHz. Tetramethylsilane and CFCl₃ were used as external or internal standards. Mass spectroscopy (MS): Varian MAT 711 instrument; electron impact with 80 eV excitation energy. The mass units and their intensities refer to the most abundant isotopes. IR spectra: Perkin–Elmer 983 instrument; samples were prepared in KBr. Crystal structures: Enraf–Nonius CAD 4 diffractometer; Mo K α irradiation; graphite monochromator. The cell constants were obtained by fine orientation of 25 reflections with usually $12^{\circ} < \theta < 25^{\circ}$.

Intensities were obtained using a $\omega - 2\theta$ scan, allowing a maximum of 60 s for one reflection and is thereof for background measurements. Lorentz polarization and absorption corrections [6] were applied, but no extinction correction. The structures were solved by direct methods [7] and refined using the program SHELX 76 with difference Fourier maps for locating lighter atoms [8]. Hydrogen atoms were located similarly and refined

Table 2 Positional parameters for $[Co_2(CO)_6(HC_2-SF_5)]$

Atom	x	у	z	B _{eq}
Co(1)	0.2156(0)	0.1212(0)	0.9007(0)	1.24
Co(2)	0.1582(0)	0.2610(0)	1.0417(0)	1.14
S	0.4721(0)	0.3127(0)	0.9494(0)	1.42
F (1)	0.4178(1)	0.4018(1)	0.8512(2)	3.43
F(2)	0.5061(1)	0.2401(1)	0.8394(1)	2.77
F(3)	0.5406(1)	0.2257(1)	1.0470(1)	3.02
F(4)	0.4531(1)	0.3879(1)	1.0607(2)	3.78
F(5)	0.6245(1)	0.3610(1)	0.9575(1)	2.43
O(1)	0.3405(2)	0.0580(1)	0.6830(1)	2.69
O(2)	-0.0691(2)	0.0299(1)	0.8264(1)	2.52
O(3)	0.3789(2)	-0.0139(1)	1.0965(2)	2.73
O(4)	-0.1337(1)	0.1950(1)	1.0519(2)	2.48
O(5)	0.1397(2)	0.4877(1)	1.0945(2)	2.59
O(6) (0.3294(2)	0.1960(1)	1.2830(1)	2.49
C (1)	0.2912(2)	0.0813(1)	0.7664(2)	1.85
C(2)	0.0412(2)	0.0623(1)	0.8550(2)	1.75
C(3)	0.3142(2)	0.0344(1)	1.0197(2)	1.82
C(4)	-0.0232(2)	0.2220(1)	1.0481(2)	1.67
C(5)	0.1453(2)	0.4007(1)	1.0744(2)	1.73
C(6)	0.2590(2)	0.2194(1)	1.1928(2)	1.63
C(7)	0.3016(2)	0.2572(1)	0.9398(2)	1.19
C(8)	0.1751(2)	0.2700(1)	0.8646(2)	1.39

Table 5

Table 3 Important bond lengths (pm) and bond angles (°) of $[Co_2(CO)_6]$

$(HC_2 - SF_5)$		
Bond lengths		-
Co(1)-Co(2)	246.9(0)	
Co(1)-C(7)	192.9(2)	
Co(1)–C(8)	195.2(2)	
Co(2)–C(7)	191.8(2)	
Co(2)–C(8)	196.1(2)	
S-F	157.6(1)-159.0(1)	
S-C(7)	177.5(2)	
C(7)-C(8)	135.2(2)	
C-0	112.8(2)-113.4(2)	
Bond angles		
Co(2) - Co(1) - C(8)	51.0(0)	
Co(1)-Co(2)-C(7)	50.3(0)	
Co(1)-Co(2)-C(8)	50.7(0)	
C(7)-Co(2)-C(8)	40.8(1)	
F-S-F	87.3(1)-89.9(1)	
Co-C-O	175.1(2)-178.5(2)	
Co(1)-C(7)-Co(2)	79.9(1)	
Co(1)-C(7)-C(8)	70.6(1)	
Co(2)-C(7)-C(8)	71.3(1)	
Co(1)-C(8)-Co(2)	78.2(1)	
Co(1)-C(8)-C(7)	68.7(1)	
Co(2) - C(8) - C(7)	67.9(1)	

Important bond lengths (pm) and bond angles (°) of $[Co_2(CO)_5(HC_2-SF_5)_2]$ Bond lengths Co(1)-Co(2) 247.6(3) Co(1)-C(1)197 (1) Co(1)-C(2)200(1) Co(1)-C(3) 216(1) 213 (1) Co(1)-C(4)Co(2)-C(1)198 (1) Co(2)-C(2)197 (1) Co(2)-C(21) 187 (1) S-F 158 (1)-160(1) C-O 109 (2)-115(2) C(1)-C(4) 141 (2) C(2)-C(3) 145 (2) C(3) - C(4)139 (2) Bond angles C(1)-Co(1)-C(2) 77.1(5) C(1)-Co(1)-C(3) 69.0(4) C(1)-Co(1)-C(4)39.8(4) C(2)-Co(1)-C(3)40.6(4) C(2)-Co(1)-C(4)68.9(4) C(3)-Co(1)-C(4)37.9(4) C(12)-Co(1)-C(11) 90.1(5) F-S-F 85.8(5)-90.3(5) C(1)-Co(2)-C(2)77.5(5) Co(2)-C(1)-C(4)117.1(8) Co(2)-C(2)-C(3) 117.3(8) Co(2)-C(3)-C(4)75.1(7) C(2)-C(3)-C(4)111(1) C(1)-C(4)-C(3)114(1)

isotropically. Experimental details of the crystal structure determinations are collected in Table 1; the results are presented in Tables 2–7.

Table 4 Positional parameters for $[Co_2(CO)_5(HC_2-SF_5)_2]$

		10020073010	2 3/21	
Atom	x	у	z	Beq
				$(Å^2)$
Co(1)	0.0320(1)	0.1101(1)	0.1046(1)	1.14
Co(2)	0.0100(1)	0.2803(1)	0.1485(1)	1.21
S(1)	0.0241(3)	0.2873(2)	-0.0247(2)	1.93
S(2)	-0.1346(2)	0.1237(2)	0.2509(2)	1.52
F(11)	0.0301(6)	0.3941(5)	0.0083(3)	2.21
F(12)	0.1543(5)	0.2709(5)	-0.0088(3)	2.00
F(13)	0.0649(6)	0.3366(5)	-0.0940(3)	3.03
F (14)	0.0212(6)	0.1848(5)	-0.064(3)	2.61
F(15)	-0.1024(6)	0.3073(5)	-0.0469(4)	3.02
F(21)	-0.1407(5)	0.2314(5)	0.2814(3)	2,11
F(22)	-0.0111(4)	0.1099(4)	0.2787(3)	1.44
F(23)	-0.1343(5)	0.0117(4)	0.2275(3)	1,76
F(24)	-0.1777(5)	0.0866(5)	0.3237(3)	2.22
F(25)	-0.2633(5)	0.1313(5)	0.2291(3)	1.88
O(11)	0.1007(7)	-0.0473(6)	0.1939(4)	2.28
O(12)	0.2057(7)	0.0520(6)	0.0095(5)	2.64
O(21)	-0.1603(8)	0.4385(7)	0.1398(5)	3.50
O(22)	0.1005(6)	0.3045(6)	0.2884(4)	2.02
O(23)	0.2250(7)	0.3704(7)	0.1094(4)	3.06
C(1)	-0.0203(9)	0.2281(8)	0.0553(6)	1.52
C(2)	-0.0849(9)	0.1648(8)	0.1676(6)	1.34
C(3)	-0.1479(9)	0.1237(8)	0.1106(6)	1.25
C(4)	-0.1098(9)	0.1615(8)	0.0484(6)	1.47
C(11)	0.0722(9)	0.0151(8)	0.1587(5)	1.27

Table 6				
Positional	parameters for	$[Co_2(CO)_6]$	$(F_3C-C_2-$	SF ₅)]

1031101111 parameters for 1002(00)6(130-02)-51301					
Atom	x	у	z	B_{eq} $(Å^2)$	
$\overline{C_{\alpha}(1)}$	0.1252(1)	0.6206(1)	0 (955(1)	1.00	
Co(1)	0.1353(1)	0.0290(1)	0.6855(1)	1.09	
Co(2)	-0.0693(1)	0.7269(1)	0.5852(1)	1.18	
S	-0.0146(3)	0.8158(2)	0.8085(2)	2.16	
F(1)	0.4295(6)	0.8215(4)	0.6877(4)	2.45	
F(2)	0.2477(7)	0.9144(4)	0.6113(4)	3.17	
F(3)	0.3701(8)	0.7952(4)	0.5408(4)	3.45	
F(4)	-0.1131(19)	0.8898(8)	0.7520(6)	12.34	
F(5)	0.1003(14)	0.7537(8)	0.8761(6)	8.64	
F(6)	0.1482(4)	0.8812(7)	0.8080(7)	9.40	
F(7)	-0.0611(8)	0.8732(4)	0.8993(4)	3.55	
F(8)	-0.1654(13)	0.7538(9)	0.8242(7)	10.20	
O(1)	0.4359(9)	0.6197(5)	0.8231(5)	2.59	
O(2)	0.2595(8)	0.5116(5)	0.5326(5)	2.43	
O(3)	-0.1088(8)	0.5134(5)	0.7865(6)	3.60	
O(4)	0.0180(8)	0.6553(5)	0.3990(6)	2.46	
O(5)	-0.2116(11)	0.9159(5)	0.5321(6)	4.10	
O(6)	-0.3888(8)	0.6242(5)	0.6246(5)	2.64	
C(1)	0.3215(12)	0.6217(6)	0.7705(7)	1.80	
C(2)	0.2144(10)	0.5548(6)	0.5931(7)	1.35	
C(3)	-0.0139(11)	0.5547(7)	0.7463(7)	2.33	
C(4)	-0.0184(11)	0.6833(6)	0.4694(8)	1.44	
C(5)	-0.1584(13)	0.8434(7)	0.5519(7)	2.24	
C(6)	-0.2704(11)	0.6641(6)	0.6066(7)	1.66	
C(7)	0.0377(10)	0.7531(5)	0.7097(7)	1.35	
C(8)	0.1557(10)	0.7600(5)	0.6435(7)	1.44	
C(9)	0.2975(10)	0.8282(5)	0.6144(7)	1.21	
/					

Table 7 Important bond lengths (pm) and bond angles (°) of $[Co_2(CO)_6(F_3C-C_2(F_3)]$

$C_2 = 3150$		
Bond lengths		-
Co(1)-Co(2)	246.3(2)	
Co(1)-C(7)	192.7(8)	
Co(1)-C(8)	193.0(8)	
Co(2)-C(7)	193.4(9)	
Co(2)-C(8)	192.8(8)	
S-F	148 (1)-158(1)	
F(1)-C(9)	141 (1)	
F(2)-C(9)	127 (1)	
F(3)-C(9)	131 (1)	
C-O	112 (2)–113(2)	
C(7)-C(8)	136 (1)	
Bond angles		
Co(2)-Co(1)-C(7)	50.5(3)	
Co(2)-Co(1)-C(8)	50.3(2)	
F-S-F	85 (1)-90(1)	
C(7)-Co(1)-C(8)	41.3(4)	
C(7)-Co(2)-C(8)	41.2(4)	
Co(1)-C(7)-Co(2)	79.3(3)	
Co(1)-C(7)-C(8)	69.4(5)	
Co(2)-C(7)-C(8)	69.2(5)	
Co(1)-C(8)-Co(2)	79.3(3)	
Co(1)-C(8)-C(7)	69.3(5)	
Co(2)-C(8)-C(7)	69.6(5)	
C(7)-C(8)-C(9)	139.4(7)	

3.1. Materials

Bis-pentafluoro- λ^6 -sulfanylethyne was obtained from BrSF₅ and H-C=C-SF₅ [9]; the latter was obtained according to [10]. F₃C-C=C-SF₅ was made from BrSF₅ and H-C=C-CF₃ [9]. Co₂(CO)₈ (Merck Schuchardt) was sublimed before use. Solvents were dried and stored under argon. [Co₂(CO)₆(HC₂-SF₅)] and [Co₂(CO)₅(HC₂-SF₅)₂] were prepared from Co₂(CO)₈ and H-C=C-SF₅ in *n*-hexane at 25°C, as previously described [4].

3.2. Preparation of $[Co_2(CO)_6(F_3C-C_2-SF_5)]$

0.90 g (4.1 mmol) of $F_3C-C\equiv C-SF_5$ and 0.50 g (1.5 mmol). of $Co_2(CO)_8$ are refluxed in *n*-hexane for 2 h. After pumping off all volatiles in high vacuum the solid is recrystallized from pentane. 0.64 g (86% yield) of orange product is obtained (melting point (m.p.), 149°C (sublimed), 152°C (decomposition). Chromatography on silica gel: R_F values: 0.46 (pentane), 0.80 pentane-diethylether (9:1), 0.98 (pentane-diethylether (1:1)).

¹⁹F NMR (84 MHz, pentane): δ multiplet 80.11– 81.02 (ab_4 type, SF₅), -53.92 (CF₃) ppm.

MS: m/z 506 (M⁺, 4.8%), 478 ([M – CO]⁺, 33.6%), 450 ([M – 2CO]⁺, 4.6%), 366 ([M – 5CO]⁺, 6.0%), 351 ([Co₂(CO)₅C₃F₃]⁺, 2.6%), 338 [M – 6CO]⁺ and/or [Co₂(CO)₄C₂SF₄]⁺, 18.4%, and smaller fragments.

IR (KBr): ν 2955(sh, w), 2923(w), 2853(w), 2547(w), 2510(w), 2360(w), 2127(s), 2095(vs), 2066(vs), 1553(m),

3.3. Preparation of 1-(pentafluoro- λ^6 -sulfanyl)-2-phenyl-2,2-difluorethane (C_6H_5 - CF_2 - CH_2 - SF_5)

2.16 g (8.8 mmol) of C_6H_5 -CO-CH₂-SF₅ [11], dissolved in 13 g of CFCl₃, is treated in a 100 ml stainless steel autoclave with 0.5 g (25 mmol) of anhydrous HF and 4.6 g (42.5 mmol) of SF₄ for 6 days at room temperature. Excess pressure is relieved into a hood, water is added, and after neutralization with K₂CO₃ the lower organic phase is separated and dried. Fractional vacuum condensation through -78 and -196°C cold traps afford 1.65 g (70% yield) of colorless crystals in the -78°C trap (m.p., 9.5°C; boiling point (b.p.), 22.8°C at 0.001 bar)

¹⁹F NMR: δ 80.34, 70.96 (ab₄ type, SF₅), -98.24 ppm. ${}^{4}J_{CF-SFb} = 13.5$ Hz; ${}^{2}J_{SFa-SFb} = 147.2$ Hz.

¹H NMR: δ 3.99, 7.32 ppm. ³ $J_{CH_2-SFb} = 27$ Hz; ³ $J_{CH_2-CF_2} = 13.5$ Hz.

MS; m/z 268 (M⁺, 53%), 141 (CH₂ – SF₅⁺, 34%), 127 (C₆H₅ – CF₂⁺ or SF₅⁺, 100%), and smaller fragments.

IR (KBr, film): ν 3056(vw), 3038(vw), 2982(vw), 2920(vw), 2854(vw), 1605(vw), 1495(vw), 1452(m), 1412(w), 1340(w), 1317(m), 1255(s), 1208(w), 1175(m), 1156(m), 1110(m), 1093(m), 1066(s), 1051(s), 1022(m), 998(s), 923(w), 904(m), 858(vs), 832(vs), 793(m), 769(s), 750(m), 696(s), 669(w), 658(m), 633(m), 624(s), 603(s), 565(m), 550(w) cm⁻¹.

3.4. Preparation of 1-(pentafluoro- λ^6 -sulfanyl)-2-phenylethyne ($C_6H_5-C \equiv C-SF_5$)

1 g (3.7 mmol) of $C_6H_5-CF_2-CH_2-SF_5$ is treated in 10 ml of *n*-pentane with 2.5 g of powdered KOH under stirring and slow warming from -20° C to room temperature. Control by ¹⁹F NMR shows the end of the reaction after a few hours. Fractional vacuum condensation of the organic layer through -60 and -196° C cold traps affords 0.64 g (75% yield) of colourless crystalls (m.p., -8.5° C; b.p., 20.7°C at 0.002 bar).

¹⁹F NMR: δ 76.61, 83.40 (ab₄ type, SF₅) ppm. ²J_{SFa-SFb} = 154.7 Hz.

¹H NMR: δ 7.13 ppm.

MS: m/z 228 (M⁺, 64%), 209 (M⁺-1, 13%), 127 (SF₅⁺, 3%), 120(C₆H₅ - C₂F⁺, 100%), and smaller fragments.

IR (KBr, film): ν 3085(vw), 3061(vw), 2223(vs), 1488(m), 1443(m), 1364(w), 1240(w), 1226(m), 1027(m), 866(vs), 800(vs), 755(vs), 686(s), 613(s), 583(s), 571(s), 536(m), 492(m), Raman (488 Nm, 36 mW), cm⁻¹: 3073(m), 2226(s), 1601(s), 1496(w), 1241(m), 1229(m), 1179(m), 1161(w), 1029(w), 1000(s), 894(m), 799(w), 791(w), 696(m), 623(w), 613(w), 584(w), 538(m), 370(w), 233(m), 142(m) cm⁻¹.

3.5. Preparation of $[Co_2(CO)_6(C_6H_5-C_2-SF_5)]$

0.18 g (0.79 mmol) of $C_6H_5-C\equiv C-SF_5$ and 0.24 g (0.7 mmol) of $Co_2(CO)_8$ are refluxed in 7.8 g of *n*-hexane. Chromatography over a silica gel column and evaporation of the major part of the solvent affords 0.3 g (83% yield) of red-brown crystalline product after cooling.

¹⁹F NMR (CD₂Cl₂): δ 79.58, 75.51 (ab₄ type, SF₅) ppm. ²J_{SFa-SFb} = 144.3 Hz.

¹H NMR (CD_2Cl_2): δ 7.9 ppm.

MS: m/z 514 (M⁺, 7%), 486 (M⁺ – CO, 34%), 458 (M⁺ – 2CO, 26%), 430 (M⁺ – 3CO, 31%), and smaller fragments, based on 278 (Co₂C₂(C₆H₅)F⁺, 100%). High resolution: M⁺(C₁₄H₅Co₂F₅O₆S) found: 513.83989. Calc.: 513.83909.

UV (CH₂Cl₂): λ 220, 256, 360, 520 nm.IR (KBr): ν 3433(w), 2921(vw), 2109.5(vs), 2077(vs), 2046.5(vs), 2038(vs), 1638(w), 1553(w), 1474(w), 1440(w), 1382(w), 1328(vw), 1198(w), 1125(w), 969(w), 902(w), 830(s), 797(s), 762(m), 733(m), 689(w), 658(w), 635(m), 606(m), 583(m), 565(m), 504(m) 488(m), 444(w), 346(w) cm⁻¹.

3.6. Preparation of $[Co_2(CO)_4(HC_2-SF_5)_2(F_3C-C_2-SF_5)]$

0.529 g (1.05 mol) of $\text{Co}_2(\text{CO})_6(\text{F}_3\text{C}-\text{C}_2 - \text{SF}_5)$ are dissolved in 20 ml of *n*-hexane, and 0.73 g (4.8 mol) of H-C=C-SF₅ is added by condensation. After 4 months at room temperature the non-volatile residue is separated by column chromatography on silica gel with petrol-ether of boiling point 40–60°C and recrystallization from *n*-pentane gives 0.37 g (47% yield) of darkblue crystalline product (m.p., 102°C).

¹⁹F NMR: δ 83.4, 67.0–76.4 (ab₄ type, 4 SF₅, J_{ab} = 130–140 Hz); -60.6 (J_{FF} = 14.7 Hz), -55.3 (J_{FF} = 13.4 Hz) (two CF₃ groups coupling to equatorial fluorine on sulfur) ppm.

¹H NMR: δ 4.18, 6.66, 6.93, 7.26 ppm.

MS: m/z 754(M⁺, 0.5%), 726 ([M – CO]⁺, 4.2%), 707 ([M – CO – F]⁺, 0.3%), 698 ([M – 2CO]⁺, 0.6%), 627 ([M – SF₅]⁺, 0.5%), and smaller fragments.

IR (KBr): ν 3099(w), 2921(w), 2118(s), 2093(vs), 2080(s), 2072(s), 2066(s), 1637(w), 1417(w), 1302(m), 1265(m), 1254(m), 1211(m), 1184(m), 1141(m), 1028(w), 949(m), 899(m), 834(vs), 805(s), 759(m), 716(w), 695(w), 662(m), 654(m), 637(m), 587(s), 553(m), 543(m), 533(m), 515(m), 478(w), 443(w), 414(w), 395(w), 346(w).

3.7. Crystal structures

Further details of the crystal structures can be obtained from Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftliche-technische Information mbH, D-76344 Eggenstein-Leopoldshafen (Germany), upon quoting the deposition number CSD 58466, the name of authors and the journal citation.

References

- R.D.W. Kemmit and D.R. Russel, in G. Wilkinson (ed.), Comprehensive Organometallic Chemistry, Vol. 5, Pergamon, Oxford, 1982, pp. 195-204.
- [2] M.A. Bennet and P.B. Donaldsen, Inorg. Chem., 17 (1978) 1995-2000.
- [3] J. Wessel, G. Kleemann and K. Seppelt, Chem. Ber., 116 (1983) 2399-2407.
- [4] J. Wessel, H. Hartl and K. Seppelt, Chem. Ber., 119 (1986) 453-463. J. Wessel, Dissertation, Freie Universität, Berlin, 1985.
- [5] R. Damerius, D. Leopold, W. Schulze and K. Seppelt Z. Anorg. Allg. Chem., 578 (1989) 110-118.
- [6] N. Walker and D. Stewart, Acta Crystallogr., Sect. A., 39 (1983) 158-166.
- [7] G.M. Sheldrick, sheLx86, A Program for Crystal Structure Solution, Göttingen University, Göttingen, 1986.
- [8] G.M. Sheldrick, shelx76, A Program for Crystal Structure Determination, Göttingen University, Göttingen, 1976.
- [9] A.D. Berry, R.A. De Marco and W.D. Fox, J. Am. Chem. Soc., 101 (1979) 737-738.
- [10] F.W. Hoover and D.D. Coffman, J. Org. Chem., 29 (1964) 3567-3570. J. Wessel, G. Kleemann and K. Seppelt, Chem. Ber., 116 (1983) 2399-2407.
- [11] T. Henkel, T. Krügerke and K. Seppelt, Angew. Chem., 102 (1990) 1171-1172; Angew. Chem., Int. Edn. Engl., 29 (1990) 1128-1129.