Pentafluoro- λ^{6}-sulfanylacetylene complexes of cobalt *

Thomas Henkel, Axel Klauck, Konrad Seppelt *
Freie Universität Berlin, Institut für Anorganische und Analytische Chemie, Fabeckstraße 34-36, D-14195 Berlin, Germany

Received 26 August 1994; in revised form 4 October 1994

Abstract

The reaction of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ gives $1: 1,1: 2$, and $1: 3$ type products, depending on R . For $\mathrm{R}=\mathrm{H}$ all three products can be isolated. According to the single-crystal structure determinations, the $1: 1$ product has the known di-cobaltatetrahedrane structure, the $1: 2$ product is a cobaltacyclopentadiene cobalt, whereas the $1: 3$ product has been previously identified as a "fly-over bridge" complex. Sterically more crowded $\mathrm{F}_{3} \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ give only the $1: 1$ reaction. The product of $\mathrm{F}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ reacts further with $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ to a $1: 3$ product, made up of different alkyne molecules.

Keywords: Cobalt; Sulfur; Fluorine; Pentafluorosulfanylacetylene complexes

1. Introduction

The reaction of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with alkynes has been well investigated [1]. A series of $1: 1$ products is well known; they have inevitably a dicobaltatetrahedrane structure. There are also a few isolated 1:3 products known [1]. In these a chain of six carbon atoms is formed from three alkyne molecules which winds around the two cobalt atoms. This configuration has been called a "fly-over bridge" complex. These complexes are sources for $1,2,4$-substituted benzenes, if alkynes $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$ are used. Only one example of a 1:2 product is known in the literature; this was obtained when $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ was reacted with highly reactive cyclooctyne. Its structure can be described as a halfsandwich complex made up of cobalt and a cobaltacyclopentadienyl ring [2].
SF_{5}-substituted alkynes are quite unreactive. This is certainly a consequence of the sterical protection by the rigid SF_{5} group, but also of its electronegativity, so that these alkynes must be regarded as electron poor. $\mathrm{F}_{5} \mathrm{~S}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ as an extreme example does not even react with undiluted SbF_{5} at room temperature [3]. Therefore it was not surprising that the reaction between $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and $\mathrm{F}_{5} \mathrm{~S}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ stops at the tetra-

[^0]hedrane stage, and the product has been identified among other methods by a single-crystal structure determination $[4,5]$. With $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ all three reactions are observed, and the compounds can be isolated. The 1:3 product has been identified as a fly-over bridge complex; its degradation with bromine serves as a source for otherwise not obtainable 1, 2, 4-($\left.\mathrm{SF}_{5}\right)_{3}$ benzene [4].

2. Results and discussion

In this work we consider the identification of the $1: 1$ and $1: 2$ products. The $1: 1$ compound is not unexpectedly a dicobaltatetrahedrane complex. The result of its crystal structure determination is shown in Fig. 1 and later in Table 3. Bond lengths and angles are quite similar to those of other dicobaltatetrahedranes [1]. The 1:2 compound, however, is formed only in very small amounts, and, besides the previously mentioned complex with cyclooctyne, no other example was known. The crystal structure determination resulted in a cobaltacyclopentadienyl cobalt complex, as shown in Fig. 2 and later in Table 5. The molecule has almost perfect mirror symmetry. The cobaltacyclopentadienyl ring is essentially planar (the sum of angles is 537°). In general the structure is very similar to that of the product with cyclooctyne. The two SF_{5} groups are

Fig. 1. orter view of $\left[\mathrm{Co}_{2}\left(\mathrm{CO}_{6}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)\right]\right.$. The vibrational ellipsoids show 50% probability.
positioned in such a way that they avoid each other as much as possible.
$\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]+\mathrm{RC} \equiv \mathrm{C}-\mathrm{SF}_{5}$

$$
\begin{align*}
& \longrightarrow\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{2} \mathrm{R}-\mathrm{SF}_{5}\right)\right] \\
& \text { Dicobaltatetrahedrane (} \mathrm{R}=\mathrm{H}, \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}, \mathrm{SF}_{5} \text {) } \\
& +2 \mathrm{HC}=\mathrm{C}-\mathrm{SF}_{5} \\
& \longrightarrow\left[\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\mathrm{C}_{2} \mathrm{H}-\mathrm{SF}_{5}\right)_{2}\right] \\
& \text { Colbatacyclopentadiene cobalt } \\
& +3 \mathrm{HC} \equiv \mathrm{C}-\mathrm{SF}_{5} \\
& \longrightarrow\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{H}-\mathrm{SF}_{5}\right)_{3}\right] \tag{1}\\
& \text { Fly-over bridge complex }
\end{align*}
$$

Since now such a cobaltacyclopentadiene cobalt complex has been formed from extremely reactive cyclooctyne as well as from quite unreactive $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$, it can be assumed that it is always present if the reaction goes beyond the $1: 1$ stage. Only small yields may have prevented detection in all those cases where 1:3 products have been isolated. It can be assumed that the $1: 1,1: 2$ and $1: 3$ products are formed stepwise and that the incoming alkyne adds in a side-on manner to one cobalt atom. The step of reorientation to the final $1: 2$ and $1: 3$ products is obviously guided by sterical repulsion of the large SF_{5} groups. So in the reaction 1:2 \rightarrow 1:3 the alkyne molecule can only add in such a way that both terminal carbon atoms of the $\mathrm{C}(6)$ chain in the fly-over bridge complex carry SF_{5}

Fig. 2. ortep view of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)_{2}\right]$. The vibrational ellipsoids show 50% probability.
groups. This enforces the generation of 1, 2, 4-substituted benzenes upon degradation.

$$
\begin{align*}
& {\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left\{\mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)-\mathrm{SF}_{5}\right\}\right]+\mathrm{HC} \equiv \mathrm{C}-\mathrm{SF}_{5}} \\
& \quad \longrightarrow\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{2} \mathrm{H}-\mathrm{SF}_{5}\right)_{2}\left\{\mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)-\mathrm{SF}_{5}\right\}\right] \tag{2}
\end{align*}
$$

The reaction of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with $\mathrm{F}_{3} \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ results only in the tetrahedrane even after long reaction times. The crystal structure of the first compound is shown in Fig. 3 and later in Table 7. The equatorial fluorine atoms on sulfur have quite large vibrational amplitudes. We assume that at $-158^{\circ} \mathrm{C}$ the free rotation of the SF_{5} group around the

Fig. 3. ORTEP view of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\mathrm{SF}_{5}\right)\right]$. The vibrational ellipsoids show 50% probability. The large vibrational amplitudes of the equatorial fluorine atoms indicate partial rotational disorder of this group at $-158^{\circ} \mathrm{C}$.

Table 1
Crystal structure experimental data

	$\left[\mathrm{Co}_{2}\left(\mathrm{CO}_{6}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)\right]\right.$	$\left[\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\mathrm{HC}_{2} \mathrm{SF}_{5}\right)_{2}\right]$	$\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\mathrm{SF} \mathrm{S}_{5}\right)\right]$
Formula	$\mathrm{C}_{8} \mathrm{HCo}_{2} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{~S}$	$\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Co}_{2} \mathrm{~F}_{10} \mathrm{O}_{5} \mathrm{~S}_{2}$	$\mathrm{C}_{9} \mathrm{Co}_{2} \mathrm{~F}_{8} \mathrm{O}_{6} \mathrm{~S}$
Molecular weight	437.81	561.78	506.01
Color	Orange	Brown-red	Orange
Size (mm)	$0.4 \times 0.4 \times 0.3$	$0.4 \times 0.2 \times 0.2$	$0.4 \times 0.4 \times 0.3$
$a(\mathrm{pm})$	964.5(2)	1192.9(4)	$773.2(2)$
b (pm)	1268.1(4)	1356.0(8)	1395.5(4)
c (pm)	1085.7(1)	1948.8(11)	1422.7(7)
$\beta\left({ }^{\circ}\right)$	100.19(1)		94.17(3)
Volume ($10^{6} \mathrm{pm}^{3}$)	1307.0(5)	3152(2)	1535(1)
Temperature (${ }^{\circ} \mathrm{C}$)	-148	-158	-158
Z	4	8	4
Space group	$P 2_{1} / n$ (No. 14)	Pbca (No. 61)	$P 2_{1} / n($ No. 14)
$\mu\left(\mathrm{cm}^{-1}\right)$	7.05	6.88	6.08
Θ range (${ }^{\circ}$)	2-30	2-25	2-25
Indices	$\pm h, k, l$	+h, + , , + l	$\pm h, k, l$
Number of measured reflections	4102	2912	2223
Number of independent reflections	3608	2539	2003
Number of reflections with $F \geqslant 3 \sigma(F)$	3231	1950	1605
Number of parameters	203	253	235
$R ; R_{w}$	0.022; 0.026	0.066; 0.052	0.058; 0.064
Weighting scheme	$1.66\left[\sigma^{2}(F)+0.0005 F^{2}\right]$	$2.05 / \sigma^{2}(F)$	$2.17 /\left[\sigma^{2}(F)+0.005 F^{2}\right]$

S-C bond has been frozen to a partially disordered orientation.

However, this tetrahedrane reacts with excess $\mathrm{HC} \equiv \mathrm{C}-\mathrm{SF}_{5}$ in very long reaction times (months at room temperature) to $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\right.\right.$ $\left.\mathrm{SF}_{5}\right)$], the first of such SF_{5}-substituted fly-over bridge complexes formed from different alkynes. This compound exists in two isomers. The inverted reaction of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)\right]$ with $\mathrm{F}_{3} \mathrm{C}-\mathrm{C}_{2}-\mathrm{SF}_{5}$ gives only alkyne exchange. Such exchange has been described before [1].

The sterically most crowded tetrahedrane carrying two SF_{5} groups, however, is completely inert against further reaction or alkyne exchange. Similarly $\mathrm{F}_{5} \mathrm{~S}$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ does not react with any dicobaltatetrahedrane.

3. Experimental details

The general procedures used were as follows. NMR spectra: JEOL F 90 Q instrument; ${ }^{1} \mathrm{H}, 89.55 \mathrm{MHz} ;{ }^{19} \mathrm{~F}$, 84.25 MHz . Tetramethylsilane and CFCl_{3} were used as external or internal standards. Mass spectroscopy (MS): Varian MAT 711 instrument; electron impact with 80 eV excitation energy. The mass units and their intensities refer to the most abundant isotopes. IR spectra: Perkin-Elmer 983 instrument; samples were prepared in KBr. Crystal structures: Enraf-Nonius CAD 4 diffractometer; Mo $\mathrm{K} \alpha$ irradiation; graphite monochromator. The cell constants were obtained by fine orientation of 25 reflections with usually $12^{\circ}<\theta<25^{\circ}$.

Intensitics were obtained using a $\omega-2 \theta$ scan, allowing a maximum of 60 s for one reflection and is thereof for background measurements. Lorentz polarization and absorption corrections [6] were applied, but no extinction correction. The structures were solved by direct methods [7] and refined using the program shelx 76 with difference Fourier maps for locating lighter atoms [8]. Hydrogen atoms were located similarly and refined

Table 2
Positional parameters for $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)\right]$

Atom	x	y	z	$B_{\text {eq }}$
$\mathrm{Co}(1)$	$0.2156(0)$	$0.1212(0)$	$0.9007(0)$	1.24
$\mathrm{Co}(2)$	$0.1582(0)$	$0.2610(0)$	$1.0417(0)$	1.14
S	$0.4721(0)$	$0.3127(0)$	$0.9494(0)$	1.42
$\mathrm{~F}(1)$	$0.4178(1)$	$0.4018(1)$	$0.8512(2)$	3.43
$\mathrm{~F}(2)$	$0.5061(1)$	$0.2401(1)$	$0.8394(1)$	2.77
$\mathrm{~F}(3)$	$0.5406(1)$	$0.2257(1)$	$1.0470(1)$	3.02
$\mathrm{~F}(4)$	$0.4531(1)$	$0.3879(1)$	$1.0607(2)$	3.78
$\mathrm{~F}(5)$	$0.6245(1)$	$0.3610(1)$	$0.9575(1)$	2.43
$\mathrm{O}(1)$	$0.3405(2)$	$0.0580(1)$	$0.6830(1)$	2.69
$\mathrm{O}(2)$	$-0.0691(2)$	$0.0299(1)$	$0.8264(1)$	2.52
$\mathrm{O}(3)$	$0.3789(2)$	$-0.0139(1)$	$1.0965(2)$	2.73
$\mathrm{O}(4)$	$-0.1337(1)$	$0.1950(1)$	$1.0519(2)$	2.48
$\mathrm{O}(5)$	$0.1397(2)$	$0.4877(1)$	$1.0945(2)$	2.59
$\mathrm{O}(6)$	$0.3294(2)$	$0.1960(1)$	$1.2830(1)$	2.49
$\mathrm{C}(1)$	$0.2912(2)$	$0.0813(1)$	$0.7664(2)$	1.85
$\mathrm{C}(2)$	$0.0412(2)$	$0.0623(1)$	$0.8550(2)$	1.75
$\mathrm{C}(3)$	$0.3142(2)$	$0.0344(1)$	$1.0197(2)$	1.82
$\mathrm{C}(4)$	$-0.0232(2)$	$0.2220(1)$	$1.0481(2)$	1.67
$\mathrm{C}(5)$	$0.1453(2)$	$0.4007(1)$	$1.0744(2)$	1.73
$\mathrm{C}(6)$	$0.2590(2)$	$0.2194(1)$	$1.1928(2)$	1.63
$\mathrm{C}(7)$	$0.3016(2)$	$0.2572(1)$	$0.9398(2)$	1.19
$\mathrm{C}(8)$	$0.1751(2)$	$0.2700(1)$	$0.8646(2)$	1.39

Table 3
Important bond lengths (pm) and bond angles (${ }^{\circ}$) of $\left[\mathrm{CO}_{2}(\mathrm{CO})_{5}\right.$ $\left.\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)\right]$

Bond lengths	
$\mathrm{Co}(1)-\mathrm{Co}(2)$	$246.9(0)$
$\mathrm{Co}(1)-\mathrm{C}(7)$	$192.9(2)$
$\mathrm{Co}(1)-\mathrm{C}(8)$	$195.2(2)$
$\mathrm{Co}(2)-\mathrm{C}(7)$	$191.8(2)$
$\mathrm{Co}(2)-\mathrm{C}(8)$	$196.1(2)$
$\mathrm{S}-\mathrm{F}$	$157.6(1)-159.0(1)$
$\mathrm{S}-\mathrm{C}(7)$	$177.5(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$135.2(2)$
$\mathrm{C}-\mathrm{O}$	$112.8(2)-113.4(2)$
Bond angles	
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(8)$	$51.0(0)$
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(7)$	$50.3(0)$
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(8)$	$50.7(0)$
$\mathrm{C}(7)-\mathrm{Co}(2)-\mathrm{C}(8)$	$40.8(1)$
$\mathrm{F}-\mathrm{S}-\mathrm{F}$	$87.3(1)-89.9(1)$
$\mathrm{Co}-\mathrm{C}-\mathrm{O}$	$175.1(2)-178.5(2)$
$\mathrm{Co}(1)-\mathrm{C}(7)-\mathrm{Co}(2)$	$79.9(1)$
$\mathrm{Co}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$70.6(1)$
$\mathrm{Co}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$71.3(1)$
$\mathrm{Co}(1)-\mathrm{C}(8)-\mathrm{Co}(2)$	$78.2(1)$
$\mathrm{Co}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$68.7(1)$
$\mathrm{Co}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$67.9(1)$

isotropically. Experimental details of the crystal structure determinations are collected in Table 1; the results are presented in Tables 2-7.

Table 4
Positional parameters for $\left[\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)_{2}\right]$

Atom	x	y	z	$\begin{aligned} & B_{\mathrm{eq}} \\ & \left(\AA^{2}\right) \end{aligned}$
Co(1)	0.0320(1)	0.1101(1)	0.1046(1)	1.14
$\mathrm{Co}(2)$	$0.0100(1)$	0.2803(1)	0.1485(1)	1.21
S(1)	$0.0241(3)$	0.2873 (2)	-0.0247(2)	1.93
S(2)	-0.1346(2)	$0.1237(2)$	0.2509(2)	1.52
$F(11)$	0.0301(6)	0.3941 (5)	0.0083(3)	2.21
$\mathrm{F}(12)$	0.1543(5)	0.2709(5)	0.0088(3)	2.00
F(13)	0.0649(6)	$0.3366(5)$	-0.0940(3)	3.03
F(14)	$0.0212(6)$	$0.1848(5)$	-0.064(3)	2.61
F(15)	-0.1024(6)	0.3073 (5)	-0.0469(4)	3.02
F(21)	-0.1407(5)	0.2314(5)	0.2814(3)	2,11
F(22)	-0.0111(4)	0.1099(4)	0.2787(3)	1.44
$\mathrm{F}(23)$	-0.1343(5)	$0.0117(4)$	0.2275(3)	1.76
F(24)	-0.1777(5)	$0.0866(5)$	0.3237(3)	2.22
F(25)	-0.2633(5)	$0.1313(5)$	0.2291(3)	1.88
$\mathrm{O}(11)$	$0.1007(7)$	-0.0473(6)	0.1939(4)	2.28
O(12)	$0.2057(7)$	0.0520(6)	$0.0095(5)$	2.64
O(21)	-0.1603(8)	$0.4385(7)$	$0.1398(5)$	3.50
O(22)	$0.1005(6)$	$0.3045(6)$	0.2884(4)	2.02
O(23)	0.2250(7)	0.3704(7)	0.1094(4)	3.06
C(1)	-0.0203(9)	0.2281 (8)	0.0553(6)	1.52
C(2)	-0.0849(9)	0.1648(8)	$0.1676(6)$	1.34
C(3)	-0.1479(9)	0.1237(8)	$0.1106(6)$	1.25
C(4)	-0.1098(9)	$0.1615(8)$	0.0484(6)	1.47
C(11)	$0.0722(9)$	0.0151(8)	0.1587(5)	1.27

Table 5
Important bond lengths (pm) and bond angles (${ }^{\circ}$) of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)_{2}\right]$

Bond lengths	
$\mathrm{Co}(1)-\mathrm{Co}(2)$	$247.6(3)$
$\mathrm{Co}(1)-\mathrm{C}(1)$	$197(1)$
$\mathrm{Co}(1)-\mathrm{C}(2)$	$200(1)$
$\mathrm{Co}(1)-\mathrm{C}(3)$	$216(1)$
$\mathrm{Co}(1)-\mathrm{C}(4)$	$213(1)$
$\mathrm{Co}(2)-\mathrm{C}(1)$	$198(1)$
$\mathrm{Co}(2)-\mathrm{C}(2)$	$197(1)$
$\mathrm{Co}(2)-\mathrm{C}(21)$	$187(1)$
$\mathrm{S}-\mathrm{F}$	$158(1)-160(1)$
$\mathrm{C}-\mathrm{O}$	$109(2)-115(2)$
$\mathrm{C}(1)-\mathrm{C}(4)$	$141(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$145(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$139(2)$
$B o n d$ angles	
$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{C}(2)$	$77.1(5)$
$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{C}(3)$	$69.0(4)$
$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{C}(4)$	$39.8(4)$
$\mathrm{C}(2)-\mathrm{Co}(1)-\mathrm{C}(3)$	$40.6(4)$
$\mathrm{C}(2)-\mathrm{Co}(1)-\mathrm{C}(4)$	$68.9(4)$
$\mathrm{C}(3)-\mathrm{Co}(1)-\mathrm{C}(4)$	$37.9(4)$
$\mathrm{C}(12)-\mathrm{Co}(1)-\mathrm{C}(11)$	$90.1(5)$
$\mathrm{F}-\mathrm{S}-\mathrm{F}$	$85.8(5)-90.3(5)$
$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{C}(2)$	$77.5(5)$
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$117.1(8)$
$\mathrm{Co}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$117.3(8)$
$\mathrm{Co}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$75.1(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$111(1)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$114(1)$

Table 6
Positional parameters for $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\mathrm{SF}_{5}\right)\right]$

Atom	x	y	z	B_{eq} $\left(\AA^{2}\right)$
$\mathrm{Co}(1)$	$0.1353(1)$	$0.6296(1)$	$0.6855(1)$	1.09
$\mathrm{Co}(2)$	$-0.0693(1)$	$0.7269(1)$	$0.5852(1)$	1.18
S	$-0.0146(3)$	$0.8158(2)$	$0.8085(2)$	2.16
$\mathrm{~F}(1)$	$0.4295(6)$	$0.8215(4)$	$0.6877(4)$	2.45
$\mathrm{~F}(2)$	$0.2477(7)$	$0.9144(4)$	$0.6113(4)$	3.17
$\mathrm{~F}(3)$	$0.3701(8)$	$0.7952(4)$	$0.5408(4)$	3.45
$\mathrm{~F}(4)$	$-0.1131(19)$	$0.8898(8)$	$0.7520(6)$	12.34
$\mathrm{~F}(5)$	$0.1003(14)$	$0.7537(8)$	$0.8761(6)$	8.64
$\mathrm{~F}(6)$	$0.1482(4)$	$0.8812(7)$	$0.8080(7)$	9.40
$\mathrm{~F}(7)$	$-0.0611(8)$	$0.8732(4)$	$0.8993(4)$	3.55
$\mathrm{~F}(8)$	$-0.1654(13)$	$0.7538(9)$	$0.8242(7)$	10.20
$\mathrm{O}(1)$	$0.4359(9)$	$0.6197(5)$	$0.8231(5)$	2.59
$\mathrm{O}(2)$	$0.2595(8)$	$0.5116(5)$	$0.5326(5)$	2.43
$\mathrm{O}(3)$	$-0.1088(8)$	$0.5134(5)$	$0.7865(6)$	3.60
$\mathrm{O}(4)$	$0.0180(8)$	$0.6553(5)$	$0.3990(6)$	2.46
$\mathrm{O}(5)$	$-0.2116(11)$	$0.9159(5)$	$0.5321(6)$	4.10
$\mathrm{O}(6)$	$-0.3888(8)$	$0.6242(5)$	$0.6246(5)$	2.64
$\mathrm{C}(1)$	$0.3215(12)$	$0.6217(6)$	$0.7705(7)$	1.80
$\mathrm{C}(2)$	$0.2144(10)$	$0.5548(6)$	$0.5931(7)$	1.35
$\mathrm{C}(3)$	$-0.0139(11)$	$0.5547(7)$	$0.7463(7)$	2.33
$\mathrm{C}(4)$	$-0.0184(11)$	$0.6833(6)$	$0.4694(8)$	1.44
$\mathrm{C}(5)$	$-0.1584(13)$	$0.8434(7)$	$0.5519(7)$	2.24
$\mathrm{C}(6)$	$-0.2704(11)$	$0.6641(6)$	$0.6066(7)$	1.66
$\mathrm{C}(7)$	$0.0377(10)$	$0.7531(5)$	$0.7097(7)$	1.35
$\mathrm{C}(8)$	$0.1557(10)$	$0.7600(5)$	$0.6435(7)$	1.44
$\mathrm{C}(9)$	$0.2975(10)$	$0.8282(5)$	$0.6144(7)$	1.21
-2	-			

Table 7
Important bond lengths (pm) and bond angles $\left(^{\circ}\right)$ of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{~F}_{3} \mathrm{C}-\right.\right.$ $\mathrm{C}_{2}-\mathrm{SF}_{5}$)]

Bond lengths	
$\mathrm{Co}(1)-\mathrm{Co}(2)$	$246.3(2)$
$\mathrm{Co}(1)-\mathrm{C}(7)$	$192.7(8)$
$\mathrm{Co}(1)-\mathrm{C}(8)$	$193.0(8)$
$\mathrm{Co}(2)-\mathrm{C}(7)$	$193.4(9)$
$\mathrm{Co}(2)-\mathrm{C}(8)$	$192.8(8)$
$\mathrm{S}-\mathrm{F}$	$148(1)-158(1)$
$\mathrm{F}(1)-\mathrm{C}(9)$	$141(1)$
$\mathrm{F}(2)-\mathrm{C}(9)$	$127(1)$
$\mathrm{F}(3)-\mathrm{C}(9)$	$131(1)$
$\mathrm{C}-\mathrm{O}$	$112(2)-113(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$136(1)$
Bond angles	
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(7)$	$50.5(3)$
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(8)$	$50.3(2)$
$\mathrm{F}-\mathrm{S}-\mathrm{F}$	$85(1)-90(1)$
$\mathrm{C}(7)-\mathrm{Co}(1)-\mathrm{C}(8)$	$41.3(4)$
$\mathrm{C}(7)-\mathrm{Co}(2)-\mathrm{C}(8)$	$41.2(4)$
$\mathrm{Co}(1)-\mathrm{C}(7)-\mathrm{Co}(2)$	$79.3(3)$
$\mathrm{Co}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$69.4(5)$
$\mathrm{Co}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$69.2(5)$
$\mathrm{Co}(1)-\mathrm{C}(8)-\mathrm{Co}(2)$	$79.3(3)$
$\mathrm{Co}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$69.3(5)$
$\mathrm{Co}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$69.6(5)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$139.4(7)$

3.1. Materials

Bis-pentafluoro- λ^{6}-sulfanylethyne was obtained from BrSF_{5} and $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ [9]; the latter was obtained according to [10]. $\mathrm{F}_{3} \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ was made from BrSF_{5} and $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{CF}_{3}$ [9]. $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (Merck Schuchardt) was sublimed before use. Solvents were dried and stored under argon. $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)\right]$ and $\left[\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)_{2}\right]$ were prepared from $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ in n-hexane at $25^{\circ} \mathrm{C}$, as previously described [4].

3.2. Preparation of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\mathrm{SF}_{5}\right)\right]$

$0.90 \mathrm{~g}(4.1 \mathrm{mmol})$ of $\mathrm{F}_{3} \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{SF}_{5}$ and $0.50 \mathrm{~g}(1.5$ mmol). of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ are refluxed in n-hexane for 2 h . After pumping off all volatiles in high vacuum the soiid is recrystallized from pentane. $0.64 \mathrm{~g}(86 \%$ yield) of orange product is obtained (melting point (m.p.), $149^{\circ} \mathrm{C}$ (sublimed), $152^{\circ} \mathrm{C}$ (decomposition). Chromatography on silica gel: R_{F} values: 0.46 (pentane), 0.80 pentane-diethylether ($9: 1$), 0.98 (pentane-diethylether ($1: 1$)).
${ }^{19}$ F NMR (84 MHz , pentane): δ multiplet $80.11-$ $81.02\left(\mathrm{ab}_{4}\right.$ type, $\left.\mathrm{SF}_{5}\right),-53.92\left(\mathrm{CF}_{3}\right) \mathrm{ppm}$.

MS: $m / z 506\left(\mathrm{M}^{+}, 4.8 \%\right), 478\left([\mathrm{M}-\mathrm{CO}]^{+}, 33.6 \%\right)$, 450 ($[\mathrm{M}-2 \mathrm{CO}]^{+}, 4.6 \%$), 366 ($[\mathrm{M}-5 \mathrm{CO}]^{+}, 6.0 \%$), 351 $\left(\left[\mathrm{Co}_{2}(\mathrm{CO})_{5} \mathrm{C}_{3} \mathrm{~F}_{3}\right]^{+}, 2.6 \%\right), 338[\mathrm{M}-6 \mathrm{CO}]^{+}$and/or $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4} \mathrm{C}_{2} \mathrm{SF}_{4}\right]^{+}, 18.4 \%$, and smaller fragments.

IR (KBr): ν 2955(sh, w), 2923(w), 2853(w), 2547(w), 2510(w), 2360(w), 2127(s), 2095(vs), 2066(vs), 1553(m),

1384(w), 1217(m), 1146(m), 969(m), 946(m), 919(w), 845(s), 749(m), 706(m), 683(m), 659(m), 644(m), 594(m), $569(\mathrm{~m}), 522(\mathrm{~m}), 515(\mathrm{~m}), 507(\mathrm{~m}), 492(\mathrm{~m}), 441(\mathrm{~m}), 421(\mathrm{sh}$, w) cm^{-1}.

3.3. Preparation of 1-(pentafluoro- λ^{6}-sulfanyl)-2-phenyl-2,2-difluorethane ($\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CF}_{2}-\mathrm{CH}_{2}-\mathrm{SF}_{5}$)

$2.16 \mathrm{~g}(8.8 \mathrm{mmol})$ of $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{SF}_{5}$ [11], dissolved in 13 g of CFCl_{3}, is treated in a 100 ml stainless steel autoclave with 0.5 g (25 mmol) of anhydrous HF and 4.6 g (42.5 mmol) of SF_{4} for 6 days at room temperature. Excess pressure is relieved into a hood, water is added, and after neutralization with $\mathrm{K}_{2} \mathrm{CO}_{3}$ the lower organic phase is separated and dried. Fractional vacuum condensation through -78 and $-196^{\circ} \mathrm{C}$ cold traps afford 1.65 g (70% yield) of colorless crystals in the $-78^{\circ} \mathrm{C}$ trap (m.p., $9.5^{\circ} \mathrm{C}$; boiling point (b.p.), $22.8^{\circ} \mathrm{C}$ at 0.001 bar)
${ }^{19}$ F NMR: $\delta 80.34,70.96\left(\mathrm{ab}_{4}\right.$ type, $\left.\mathrm{SF}_{5}\right),-98.24$ $\mathrm{ppm} .{ }^{4} J_{\mathrm{CF}-\mathrm{SFb}}=13.5 \mathrm{~Hz} ;{ }^{2} J_{\mathrm{SFa}-\mathrm{SFb}}=147.2 \mathrm{~Hz}$.
${ }^{1} \mathrm{H}$ NMR: $\delta 3.99,7.32 \mathrm{ppm} .{ }^{3} \mathrm{~J}_{\mathrm{CH}_{2}-\mathrm{SFb}}=27 \mathrm{~Hz}$; ${ }^{3} \mathrm{~J}_{\mathrm{CH}_{2}-\mathrm{CF}_{2}}=13.5 \mathrm{~Hz}$.

MS; $m / z 268\left(\mathrm{M}^{+}, 53 \%\right), 141\left(\mathrm{CH}_{2}-\mathrm{SF}_{5}^{+}, 34 \%\right)$, $127\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CF}_{2}^{+}\right.$or $\left.\mathrm{SF}_{5}^{+}, 100 \%\right)$, and smaller fragments.

IR (KBr, film): ν 3056(vw), 3038(vw), 2982(vw), 2920(vw), 2854(vw), 1605(vw), 1495(vw), 1452(m), 1412(w), 1340(w), 1317(m), 1255(s), 1208(w), 1175(m), 1156(m), 1110(m), 1093(m), 1066(s), 1051(s), 1022(m), $998(\mathrm{~s}), 923(\mathrm{w}), 904(\mathrm{~m}), 858(\mathrm{vs}), 832(\mathrm{vs}), 793(\mathrm{~m}), 769(\mathrm{~s})$, $750(\mathrm{~m}), 696(\mathrm{~s}), 669(\mathrm{w}), 658(\mathrm{~m}), 633(\mathrm{~m}), 624(\mathrm{~s}), 603(\mathrm{~s})$, $565(\mathrm{~m}), 550(\mathrm{w}) \mathrm{cm}^{-1}$.
3.4. Preparation of 1 -(pentafluoro- λ^{6}-sulfanyl)-2-phenyl-
ethyne $\left(C_{6} H_{5}-C \equiv C-S F_{5}\right)$
$1 \mathrm{~g}(3.7 \mathrm{mmol})$ of $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CF}_{2}-\mathrm{CH}_{2}-\mathrm{SF}_{5}$ is treated in 10 ml of n-pentane with 2.5 g of powdered KOH under stirring and slow warming from $-20^{\circ} \mathrm{C}$ to room temperature. Control by ${ }^{19}$ F NMR shows the end of the reaction after a few hours. Fractional vacuum condensation of the organic layer through -60 and $-196^{\circ} \mathrm{C}$ cold traps affords 0.64 g (75% yield) of colourless crystalls (m.p., $-8.5^{\circ} \mathrm{C}$; b.p., $20.7^{\circ} \mathrm{C}$ at 0.002 bar).
${ }^{19}$ F NMR: δ 76.61, $83.40\left(\mathrm{ab}_{4}\right.$ type, $\left.\mathrm{SF}_{5}\right)$ ppm. ${ }^{2} J_{\mathrm{SFa}-\mathrm{SFb}}=154.7 \mathrm{~Hz}$.
${ }^{1}$ H NMR: $\delta 7.13$ ppm.
MS: $m / z 228\left(\mathrm{M}^{+}, 64 \%\right), 209\left(\mathrm{M}^{+}-1,13 \%\right), 127$ $\left(\mathrm{SF}_{5}^{+}, 3 \%\right), 120\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{~F}^{+}, 100 \%\right)$, and smaller fragments.

IR (KBr, film): ν 3085(vw), 3061(vw), 2223(vs), 1488(m), 1443(m), 1364(w), 1240(w), 1226(m), 1027(m), 866(vs), 800(vs), 755(vs), 686(s), 613(s), 583(s), 571(s), $536(\mathrm{~m}), 492(\mathrm{~m})$, Raman ($488 \mathrm{Nm}, 36 \mathrm{~mW}$), cm^{-1} : 3073(m), 2226(s), 1601(s), 1496(w), 1241(m), 1229(m),
$1179(\mathrm{~m}), 1161(\mathrm{w}), 1029(\mathrm{w}), 1000(\mathrm{~s}), 894(\mathrm{~m}), 799(\mathrm{w})$, 791(w), 696(m), 623(w), 613(w), 584(w), 538(m), 370(w), 233(m), 142 (m) cm^{-1}.

3.5. Preparation of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{2}-\mathrm{SF} F_{5}\right)\right]$

$0.18 \mathrm{~g}(0.79 \mathrm{mmol})$ of $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ and 0.24 g $(0.7 \mathrm{mmol})$ of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ are refluxed in 7.8 g of n hexane. Chromatography over a silica gel column and evaporation of the major part of the solvent affords 0.3 g (83% yield) of red-brown crystalline product after cooling.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 79.58,75.51\left(\mathrm{ab}_{4}\right.$ type, $\left.\mathrm{SF}_{5}\right)$ ppm. ${ }^{2} J_{\mathrm{SFa}-\mathrm{SFb}}=144.3 \mathrm{~Hz}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.9 \mathrm{ppm}$.
MS: $m / z 514\left(\mathrm{M}^{+}, 7 \%\right), 486\left(\mathrm{M}^{+}-\mathrm{CO}, 34 \%\right), 458$ $\left(\mathrm{M}^{+}-2 \mathrm{CO}, 26 \%\right), 430\left(\mathrm{M}^{+}-3 \mathrm{CO}, 31 \%\right)$, and smaller fragments, based on $278\left(\mathrm{Co}_{2} \mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{F}^{+}, 100 \%\right)$. High resolution: $\mathrm{M}^{+}\left(\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{Co}_{2} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{~S}\right)$ found: 513.83989. Calc.: 513.83909.

UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda 220,256,360,520 \mathrm{~nm} . \mathrm{IR}(\mathrm{KBr}): \nu$ 3433(w), 2921(vw), 2109.5(vs), 2077(vs), 2046.5(vs), 2038(vs), 1638(w), 1553(w), 1474(w), 1440(w), 1382(w), 1328(vw), 1198(w), 1125(w), 969(w), 902(w), 830(s), $797(\mathrm{~s}), 762(\mathrm{~m}), 733(\mathrm{~m}), 689(\mathrm{w}), 658(\mathrm{w}), 635(\mathrm{~m}), 606(\mathrm{~m})$, $583(\mathrm{~m}), 565(\mathrm{~m}), 504(\mathrm{~m}) 488(\mathrm{~m}), 444(\mathrm{w}), 346(\mathrm{w}) \mathrm{cm}^{-1}$.
3.6. Preparation of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left(\mathrm{HC}_{2}-\mathrm{SF}_{5}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\right.\right.$ $\left.S F_{5}\right)$]
$0.529 \mathrm{~g}(1.05 \mathrm{~mol})$ of $\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{~F}_{3} \mathrm{C}-\mathrm{C}_{2}-\mathrm{SF}_{5}\right)$ are dissolved in 20 ml of n-hexane, and $0.73 \mathrm{~g}(4.8 \mathrm{~mol})$ of $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{SF}_{5}$ is added by condensation. After 4 months at room temperature the non-volatile residue is separated by column chromatography on silica gel with petrol-ether of boiling point $40-60^{\circ} \mathrm{C}$ and recrystallization from n-pentane gives $0.37 \mathrm{~g}(47 \%$ yield) of darkblue crystalline product (m.p., $102^{\circ} \mathrm{C}$).
${ }^{19}$ F NMR: $\delta 83.4,67.0-76.4\left(\mathrm{ab}_{4}\right.$ type, $4 \mathrm{SF}_{5}, J_{\mathrm{ab}}=$ $130-140 \mathrm{~Hz}) ;-60.6\left(J_{\mathrm{FF}}=14.7 \mathrm{~Hz}\right),-55.3\left(\mathrm{~J}_{\mathrm{FF}}=13.4\right.$ Hz) (two CF_{3} groups coupling to equatorial fluorine on sulfur) ppm.
${ }^{1} \mathrm{H}$ NMR: $\delta 4.18,6.66,6.93,7.26 \mathrm{ppm}$.

MS: $m / z 754\left(\mathrm{M}^{+}, 0.5 \%\right), 726\left([\mathrm{M}-\mathrm{CO}]^{+}, 4.2 \%\right)$, $707\left([\mathrm{M}-\mathrm{CO}-\mathrm{F}]^{+}, 0.3 \%\right), 698\left([\mathrm{M}-2 \mathrm{CO}]^{+}, 0.6 \%\right)$, $627\left(\left[\mathrm{M}-\mathrm{SF}_{5}\right]^{+}, 0.5 \%\right)$, and smaller fragments.

IR (KBr): ν 3099(w), 2921(w), 2118(s), 2093(vs), 2080(s), 2072(s), 2066(s), 1637(w), 1417(w), 1302(m), $1265(\mathrm{~m}), 1254(\mathrm{~m}), 1211(\mathrm{~m}), 1184(\mathrm{~m}), 1141(\mathrm{~m}), 1028(\mathrm{w})$, 949(m), 899(m), 834(vs), 805(s), 759(m), 716(w), 695(w), $662(\mathrm{~m}), 654(\mathrm{~m}), 637(\mathrm{~m}), 587(\mathrm{~s}), 553(\mathrm{~m}), 543(\mathrm{~m}), 533(\mathrm{~m})$, 515(m), 478(w), 443(w), 414(w), 395(w), 346(w).

3.7. Crystal structures

Further details of the crystal structures can be obtaincd from Fachinformationszentrum Karlsruhc, Gesellschaft für wissenschaftliche-technische Information mbH, D-76344 Eggenstein-Leopoldshafen (Germany), upon quoting the deposition number CSD 58466, the name of authors and the journal citation.

References

[1] R.D.W. Kemmit and D.R. Russel, in G. Wilkinson (ed.), Comprehensive Organometallic Chemistry, Vol. 5, Pergamon, Oxford, 1982, pp. 195-204.
[2] M.A. Bennet and P.B. Donaldsen, Inorg. Chem., 17 (1978) 1995-2000.
[3] J. Wessel, G. Kleemann and K. Seppelt, Chem. Ber., 116 (1983) 2399-2407.
[4] J. Wessel, H. Hartl and K. Seppelt, Chem. Ber., 119 (1986) 453-463. J. Wessel, Dissertation, Freie Universität, Berlin, 1985.
[5] R. Damerius, D. Leopold, W. Schulze and K. Seppelt Z. Anorg. Allg. Chem., 578 (1989) 110-118.
[6] N. Walker and D. Stewart, Acta Crystallogr., Sect. A., 39 (1983) 158-166.
[7] G.M. Sheldrick, shelx86, A Program for Crystal Structure Solution, Göttingen University, Göttingen, 1986.
[8] G.M. Sheldrick, shelx76, A Program for Crystal Structure Determination, Göttingen University, Göttingen, 1976.
[9] A.D. Berry, R.A. De Marco and W.D. Fox, J. Am. Chem. Soc., 101 (1979) 737-738.
[10] F.W. Hoover and D.D. Coffman, J. Org. Chem., 29 (1964) 3567-3570. J. Wessel, G. Kleemann and K. Seppelt, Chem. Ber., 116 (1983) 2399-2407.
[11] T. Henkel, T. Krügerke and K. Seppelt, Angew. Chem., 102 (1990) 1171-1172; Angew. Chem., Int. Edn. Engl., 29 (1990) 1128-1129.

[^0]: * Dedicated to Herbert Schumann on the occasion of his 60th birthday.
 - Corresponding author.

